Saddle Point Criteria and Duality in Multiobjective Programming via an Η-approximation Method
نویسندگان
چکیده
In this paper, Antczak’s -approximation approach is used to prove the equivalence between optima of multiobjective programming problems and the -saddle points of the associated -approximated vector optimisation problems. We introduce an -Lagrange function for a constructed -approximated vector optimisation problem and present some modified -saddle point results. Furthermore, we construct an -approximated Mond-Weir dual problem associated with the original dual problem of the considered multiobjective programming problem. Using duality theorems between -approximation vector optimisation problems and their duals (that is, an -approximated dual problem), various duality theorems are established for the original multiobjective programming problem and its original Mond-Weir dual problem.
منابع مشابه
Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also fo...
متن کاملOptimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions
In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...
متن کاملMultiobjective security game with fuzzy payoffs
A multiobjective security game problem with fuzzy payoffs is studied in this paper. The problem is formulated as a bilevel programming problem with fuzzy coefficients. Using the idea of nearest interval approximation of fuzzy numbers, the problem is transformed into a bilevel programming problem with interval coefficients. The Karush-Kuhn-Tucker conditions is applied then to reduce the problem ...
متن کاملDuality Theorem and Vector Saddle Point Theorem for Robust Multiobjective Optimization Problems
In this paper, Mond-Weir type duality results for a uncertain multiobjective robust optimization problem are given under generalized invexity assumptions. Also, weak vector saddle-point theorems are obtained under convexity assumptions.
متن کاملDuality for the class of a multiobjective problem with support functions under $K$-$G_f$-invexity assumptions
In this article, we formulate two dual models Wolfe and Mond-Weir related to symmetric nondifferentiable multiobjective programming problems. Furthermore, weak, strong and converse duality results are established under $K$-$G_f$-invexity assumptions. Nontrivial examples have also been depicted to illustrate the theorems obtained in the paper. Results established in this paper unify...
متن کامل